11/07/2016

Quarkslab's blog

Reversing a Finite Field Multiplication Optimization

n
(»]

wweeygwgwwwvewwwwnw

W

atom feed
twitter

github

Android
Challenge
Cryptography
Development
Exploitation
Fuzzing

Life at Quarkslab
Maths

PenTest

Program Analysis
Programming
ReverseEngineering

Software

Reversing a Finite Field Multiplication
Optimization

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html

1/14

http://blog.quarkslab.com/index.html
http://blog.quarkslab.com/feeds/all.rss.xml
https://twitter.com/quarkslab
https://github.com/quarkslab
http://blog.quarkslab.com/category/android.html
http://blog.quarkslab.com/category/challenge.html
http://blog.quarkslab.com/category/cryptography.html
http://blog.quarkslab.com/category/development.html
http://blog.quarkslab.com/category/exploitation.html
http://blog.quarkslab.com/category/fuzzing.html
http://blog.quarkslab.com/category/life-at-quarkslab.html
http://blog.quarkslab.com/category/maths.html
http://blog.quarkslab.com/category/pentest.html
http://blog.quarkslab.com/category/program-analysis.html
http://blog.quarkslab.com/category/programming.html
http://blog.quarkslab.com/category/reverseengineering.html
http://blog.quarkslab.com/category/software.html
http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html

11/07/2016 Reversing a Finite Field Multiplication Optimization

CEE) tWed 20 April 2016 LJean-Baptiste Bédrune &Marion Videau =
ReverseEngineering. Wcryptography ®mode ®aes-gcm ®optimization ®
arithmetic

An optimization for the finite field multiplication on 128-bit elements for AES-GCM exists whose
explanation was not published, preventing any further application with different parameters. We
reverse engineered the result to 1) get the explanation and 2) be able to apply it with other
parameters.

Introduction

The goal of this article is to explain what this piece of code does.

vmovdga T3, [W]

vpclmulqdq T2, T3, T7, 0x01

vpshufd T4, T7, 78

vpxor T4, T4, T2

vpclmulqdq T2, T3, T4, 0x01

vpshufd T4, T4, 78

vpxor T4, T4, T2

vpXxor T1, T1, T4 ; result in T1

In fact, we are not completely in the dark as we know it performs, in an optimized way, a finite
field multiplication used in AES-GCM. We will show how we reconstructed the higher level
algorithm behind the optimization. The reversing allowed us to show the equivalence between
seemingly different pieces of codes, understand what the constants represented and
eventually apply the optimization with different parameters.

Context

The Galois/Counter Mode of operation (or GCM) has been standardized by NIST in 2007
[GCM2007] as an authenticated encryption mode to be used with AES [AES2001]. Its
performance is notably good when used in software on usual desktops since recent Intel
architectures propose the AES-NI [1] and the CLMUL instruction sets [2].

To avoid having to dive into small details of the standard, we will simply sum up the main

characteristics of the AES-GCM mode. The general principle behind the construction of the

mode is the so-called Wegman-Carter construction for a MAC (Message Authentication Code)

—a MAC being the symmetric cryptographic algorithm that provides authentication of the

message origin (also known as cryptographic integrity) between two parties. To build such a

MAC you need two ingredients:

e A universal family of hash functions [3], i.e. a set of keyed non-cryptographic hash

functions having a low probability of collision when the key is chosen randomly. In AES-
GCM, this universal family is called GHASH (the Galois part of the name) and its key is H

given by the 128-bit all-zero bloc encrypted with AES under a key K. The data to

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 2/14

http://blog.quarkslab.com/author/jean-baptiste-bedrune.html
http://blog.quarkslab.com/author/marion-videau.html
http://blog.quarkslab.com/category/reverseengineering.html
http://blog.quarkslab.com/tag/cryptography.html
http://blog.quarkslab.com/tag/mode.html
http://blog.quarkslab.com/tag/aes-gcm.html
http://blog.quarkslab.com/tag/optimization.html
http://blog.quarkslab.com/tag/arithmetic.html

11/07/2016 Reversing a Finite Field Multiplication Optimization

authenticate (the ciphertext plus some additional data) is hashed with GHASH which
outputs a 128-bit block.

¢ A keystream to XOR with the output of GHASH. In AES-GCM, the keystream is obtained
by AES in counter mode (the Counter part of the name) keyed with the key K. The first
block of keystream is reserved to encrypt the output of GHASH, the rest of the keystream
is used to encrypt the plaintext, giving the ciphertext—which is the input to GHASH, if you

followed up to now; in case you did not, a little graphic help thereafter.

K

IV — AES-CTR

Block 0 Block lton
4%‘5 %“)ﬁ Plaintext
Clphertext
Formatting ~+—— Additional Data

Data to authenticate

GHASH ®——H =—— aps [« 0r128

The very heart of GHASH relies on multiplying (in a finite field sense) the 128-bit blocks of data
to authenticate with powers (in a finite field sense) of H. A finite field being also called a Galois
field, you know why Galois—Evariste Galois (1811-1832)—has been invoked.

The input being m 128-bit blocks X1, ..., X,,, the universal hashing is performed under the
key H in the following manner:

GHASH(X|, ... Xn) = X1 s H" @ X2 o H" ' @ - @ X, « H,

where e stands for the finite field multiplication and @ is the finite field addition.

How Data Are Represented

As it is particularly crucial not to misunderstand the slightest bit of any constant in representing
a finite field, we need to take a little time to explain how data are represented. Furthermore, in
the case of GCM, the representation is not even usual.

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 3/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

Binary Finite Field elements into Binary Strings

We work in the binary finite field GF(2128). Elements are represented as binary polynomials of
degree at most 127. Such elements are stored through the sequence of their binary
coefficients, which means an element is represented as a 128-bit word, where the coefficient of
the degree i monomial is stored at position i. Then, the most significant bit represents the
coefficient of the monomial of degree 127 and the least significant bit represents the constant
of the polynomial.

Example: The bit string a = aj27a126 ... agp stores the sequence of coefficients of the
polynomial a(X) = a127X127 + a126X126 + -+« 4+ ag. For instance, we consider a
finite field element P which is represented by the polynomial
Pi(X) = X7 + X? + X + 1. The polynomial—therefore the finite field element
P, is stored on 128 bits as the bit string (0°120) 10000111, where (0°120)
stands for 0 repeated 120 times.

The finite field addition of two elements is simply carried out by the binary sum of the
coefficients of the monomials having the same degree. It corresponds to the bitwise XOR of
the two 128-bit words representing the polynomials. It means, we denote by + the addition of
two polynomials and we denote by @ the addition of two elements of the finite field, as it is a
bitwise XOR on the bit string representation.

Example: The finite field addition of P1(X) = X’ + X* + X + | and
P>(X) = X% + X° + X + 1 is represented by (0°120)10000111 @
(07120)011060011 = (07120)11100100.
As we work with binary polynomials, subtraction is the same as addition and in the following we
will not use any minus signs.

The polynomial multiplication of two polynomials is the usual one you already know.

Example: The polynomial multiplication of P1(X) = X’ + X2 + X + 1 and X? equals
X° + X* + X3 + X?. This example shows that the polynomial multiplication by X"
corresponds to a left shift by n positions. If the degree of the result is greater than
the size of the word you use to represent it, then you lose coefficients in the void.

The finite field multiplication of two elements, that we denote by e, corresponds to the
modular multiplication of the two corresponding polynomials modulo the defining polynomial of
the finite field. The GCM standard specifies that the defining polynomial one should use is
PX)=XB +RX)withRX) =X +X*> +X + 1.

Example: The finite field multiplication of P1(X) = X7 + X2 + X + 1 and P3(X) = X'?!
equals P1(X) X P3(X) mod P(X), which equals
X' 4 X128 4 X122 £ X'?! mod P(X). This means
(P1eP)X) =X + X2 + X' + X7 + X?> + X + 1, hence
(07120) 10000111 » 0000001 (6°121) = 0000111(0~113)10000111.

The finite field multiplication by X" is an important special case. It simply corresponds to the
left shift by n positions, when the degree of the polynomial to multiply is smaller than 127 — n
(when this degree is bigger than 128 — n it resorts to the former general case finite field

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 4/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

multiplication).

Example: Multiplying P1(X) = X’ + X? + X + 1 with P4(X) = X? equals
P1(X) X P4(X) mod P(X), which equals X° + X* + X> + X?. Hence
(07120)10000111 e (07125)100 = (07118)1000011100.

The polynomial division is denoted by div and is the usual Euclidean division (like the
integer division but for polynomials).

Example: Dividing Ps(X) = X° + X* + X> + X% + X + 1 by X? in the polynomials gives:
Ps(X) div P4(X) = X7 + X? + X + 1. This example shows that the polynomial
division by X" corresponds to a right shift by 7 positions. Of course, you lose all the
coefficients of indices below zero in the void.

The finite field division of a by b, that we denote by a/b, corresponds to a » b~! where b™!
is computed thanks to the extended Euclidean algorithm. As we represent elements by
polynomials, the operation is denoted by a(X)/b(X) (mod P(X)), which means we compute
first the modular inverse of b(X) modulo P(X) and then we multiply it modulo P(X) by a(X).

Example: The finite field division of Ps(X) = X° + X* + X3 + X2 + X + 1 by P4(X) = X?
is represented by Pg(X)/P4(X) (mod P(X)). The extended Euclidean algorithm
provides the value of P;l(X) (mod P(X)) = X" + X'%6 4+ X + X 4+ X. Then
(Pe/P4)(X) (mod P(X)) equals
XO+X 4+ X+ X2+ X+ D x (X + X120 + X° + X° + X) (mod P(X)).
The resultis X7 + X* + X + X% + X + 1. Hence (0°118)1000011111 /
(07125)100 = (07120)10011111.

The finite field division by X" is the counterpart of the multiplication case. It corresponds to
the right shift by n positions, when the degree of the smallest degree monomial of the
polynomial to divide is bigger than n (when this degree is smaller than n — 1 it resorts to the
general case division).

Example: Dividing P5s(X) = X° + X* 4+ X 4+ X? by P4(X) = X? equals
Ps(X)/P4(X) mod P(X) = X’ + X* + X + 1. Hence (6°118)1000011100} /
(67125)100 = (6°120)10000111.

Beware of notions and pieces of notations, especially for division. We denote by div the
polynomial division and by / the finite field division. The only case where a(X) div b(X)
corresponds to a(X)/b(X) (mod P(X)) is the case where a(X) is a multiple of b(X) of
degree less than 127. Otherwise, we deal with two distinct notions and computations.

Binary Strings into Binary Finite Field Elements

Suppose you are given a binary file and you want to apply AES-GCM to it. How would you
embed the bit strings into elements of a finite field? The straightforward way is to consider the
bit string as the sequence of the coefficients of the polynomial representing an element of the
finite field we are working in. This leaves to the designer the choice of the bit numbering to use,
e.g. either considering the bit string a = 11001001 to be a = ajagasasazarayap (most
significant bit is leftmost) or a = agaiazazasasaea; (most significant bit is rightmost).

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 5/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

The most usual representation used when manipulating elements in a finite field is the one
where most significant bit means leftmost bit and least significant bit means rightmost bit. We
used it beforehand to illustrate the representation of finite field elements. The GCM standard
counterintuitively specifies that bit strings have to be considered with the opposite convention.
It means that with GCM, a 128-bit block has to be numbered a = agaiazas ... aj7. This
implies that on most cases when the two conventions have to be used simultaneously, input bit
strings have to be reflected first before being applied finite field operations and the result be
reflected back, to comply with the standard (one can find an analysis of such a choice by
Rogaway in [Rog2011], Remark 12.4.4, p.130). It is the case with all of the Intel's
implementations.

Available Instructions for Binary Finite Field Arithmetic

As we have seen, adding two finite field elements is easy, we use the bitwise XOR. Some
cases of multiplications or divisions are easy, we use left or right shifts. Until recently, the
general case multiplication or division resorted to special arithmetic operations to be
implemented in software. The situation ended for the multiplication with the advent of the
pclmulqdq instruction which computes the polynomial multiplication.

Efficiency Evolution of the PCLMULQDQ
Instruction

The multiplication of two binary polynomials can be efficiently carried out with the pclmulqdq
instruction which was made available by Intel since the Westmere processor line in 2010,
explicitly to improve the efficiency of AES-GCM, coming along the AES-NI instruction set.
CLMUL stands for carry-less multiplication as in polynomial arithmetic, contrary to the usual
integer arithmetic, there is no carry to take care of. The instruction typically takes as inputs two
64-bit words and outputs a 128-bit result.

Quite ironically, its carry-less characteristic did not make the pclmulqdq instruction very
efficient at first, compared to a standard integer multiplication. If we refer to Fog's Instruction
tables [Fog2016], the latency and reciprocal throughput of pclmulqgdq have evolved
significantly since 2010.

’ Year (approx.) \ CPU Name \ Latency \ Reciprocal throughput ‘
2010 Intel Westmere 12 8
2011 Intel Sandy Bridge 14 8
2012 Intel Ivy Bridge 14 8
2013 Intel Haswell 7 2
2014 Intel Broadwell 5 1
2015 Intel Skylake 7 1
2011 AMD Bulldozer 12 7
2012 AMD Piledriver 12 7
2014 AMD Steamroller 11 7
2013 AMD Jaguar 3 1

This evolution explains why computation involving pclmulgdq are subjected to various
optimization techniques depending on the targeted platform. For instance a multiplication of
two 128-bit words into a 256-bit word requires either 4 pclmulqgdq instructions with a classical
approach or 3 pclmulqdq instructions with a Karatsuba algorithm. The latter was preferred

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 6/14

11/07/2016

Reversing a Finite Field Multiplication Optimization

with a slow pclmulgdq instruction and a classical approach preferred with a faster
pclmulqdgq.

For the same reason, various optimization strategies were considered for the modular
reduction. Why optimize the modular reduction? In fact, once the multiplication of two
polynomials is carried out, the remainder is obtained through the division (the Euclidean one)
which outputs a quotient and a remainder. As division is usually more expensive than
multiplication several strategies were devised to trade divisions for multiplications, which are
especially efficient when one works entirely with the same modulus as it is the case with finite
field computations.

A Former Optimization of the Modular
Reduction

In 2009, in [GK2010], Gueron and Kounavis proposed an optimization of the reduction modulo
P(X) which only uses shifts and XORs and was taking place after the reflection of the inputs
and their multiplication.

Their technique relied on two steps. First they applied a reduction algorithm known as the
Barret's algorithm (see [BZ2010] 2.4.1) which involves 2 carry-less multiplications. The
algorithm, adapted to the case of binary polynomials of degree less than 256 to be reduced by
a polynomial of degree 128, is given below.

Require:
e X'28 the Barrett’s basis
e U, the input polynomial to reduce, of degree at most 255
e P, the reduction polynomial of degree 128
e P = X?%6div P

Ensure: T = U mod P
1: function BARRETTREDUCTION(U, X128 P, P’)
2: Q «~ ((U div X128) x P’) div X128
3: T+—U+QxP
4: return T'
5: end function

Then they took advantage of the special structure of the reduction polynomial to devise an
optimization only relying on shifts and XORs. Indeed, going into details, for
PX)=XB+X"+X?>+X+1, we have P = X>® div P = P. Then Line 2 of the
function (computation of the quotient Q) can be rewritten as:

Input: 256-bit operand [X3 : X2 : X1 : X0O]
A = X3 >> 63

B = X3 >> 62

C = X8 >> 57

D=X2DA@BGC

Output: D

Line 3 of the algorithm is in fact equivalent to 7 = (U mod X'?®) + (Q x (P + X'?®) as the
remainder has degree less than the modulus. This means we only consider the 128 least

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html

7/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

significant coefficients of U and we multiply Q by X’ + X? + X + 1. This gives the following
optimization:

Input: 256-bit operand [X3 : X2 : X1 : X0] and D computed beforehand
[E1L : EO] = [X3 : D] << 1

[F1 : FO] = [X3 : D] << 2

[G1 : GO] = [X3 : D] << 7

Output: [X3 @ E1 P F1 P G1 P X1 : D P E0O @ FO P GO @ X0]

This optimization works on already reflected inputs and made sense when the pclmulqdq
instruction was rather slow as the aim was globally trying to avoid too much of it. The trend of a
faster pclmulgdqg made it interesting to consider another optimization.

An optimization that Needs Explanations

In 2012, in [0G2012] and as we will see equivalently in [Gue2013], Intel proposed a new
optimization of the modular reduction. It involved working directly on straight inputs (i.e. non
reflected) and the call to pclmulqgdg.

The optimization described by Ozturk and Gopal in OG2012 is called PCLMULQDQ-based
reduction and is reproduced thereafter. Very few explanations are available in the document
and the value of POLY2 is not given.

;first phase of the reduction
movdga %%T3, [POLY2 wrt rip]
movdqa %%T2, %%T3

pclmulqdq %%T2, %%GH, Ox01
pslldq %%712, 8

pxor %%GH, %%T2

;second phase of the reduction
movdqa %%T2, %%T3

pclmulqdq %%T2, %%GH, Ox00
psrldg %%T2, 4

pclmulqdq %%GH, %%T3, Ox01
pslldq %%GH, 4

pXor %%GH, %%T2
pXor %%GH, %%T1

The optimization of Gue2013 is a little further described by Gueron as a Montgomery reduction
but still lacks key elements explained to be able to apply it with other parameters, especially
another defining polynomial for a finite field. The author cites an article of 2012 for this
optimization but it is not currently available to the best of our knowledge. The code comes
along an equivalent pseudo-code which shows an important constant and the name of the
algorithmic technique used.

vmovdga T3, [W]

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 8/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

vpclmulqdq T2, T3, T7, 0x01

vpshufd T4, T7, 78

vpxor T4, T4, T2

vpclmulqdg T2, T3, T4, 0x01

vpshufd T4, T4, 78

vpxor T4, T4, T2

vpxor T1, T1, T4 ; result in T1

Montgomery reduction

Input: 256-bit operand [X3 : X2 : X1 : X0O]
[A1 : AO] = X0 ¢ OXC200000000000000

[B1 : BO] [X0 @ Al : X1 @ A0]

[C1 : CO] = BO * OxCc200000000000000

[D1 : DO] = [BO @ C1 : Bl @ CO]

Output: [D1 @ X3 : DO @ X2]

The reversing goal is to reconstruct the high-level algorithm applied, determine what the
constant represents, prove the equivalence of the two aforementioned optimizations—Ozturk
and Gopal's PCLMULQDQ-based reduction and Gueron's Montgomery reduction, deduce the
value of POLY2 and make it possible to apply this optimization on another finite field.

Reversing

The very idea behind the new optimization is based on rewriting the modular multiplication
directly on the straight inputs. We make use of Gueron's slides Gue2013 to infer most of the
explanations. They provide a formula which looks like a Montgomery's multiplication
(FastREDC, see Algorithm 2.7 in BZ2010) modulo the defining polynomial reflected.

Rewriting the Modular Multiplication in GCM on Straight Inputs

As it is a major source of mistakes, we recall first that a binary polynomial represented by a
binary word of size w has degree at mostw — 1.

Let us consider the polynomial A(X) = A127 X" 4+ A1 X120 + - + Ag. If we denote by
ref(A, w) the reflected polynomial of A on a binary word of size w, with w > 128 we have

ref(A, w)(X) = AoX" 1 + A1 X772 + oo + Ay X112 = A hHxv L

As we mentioned earlier, all Intel's implementations of GCM work on reflected inputs in order to
comply with the standard, whose choice of bit numbering is contrary to customs. In that
respect, the Intel's GCM way to multiply two inputs A and B is the following:

Intel's GCM modular multiplication
T1 ref(A, 128)

T2 = ref(B, 128)

T3 = T1 » T2

return ref (T3, 128)

with 73(X) = T1(X) X T>(X) mod P(X). There is an useful and easy property one can
check on reflected inputs when working with the polynomial representation (it is straightforward

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 9/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

when one writes it):

ref(A,wy) X ref(B,wp) = ref(A X B,ws + wp — 1)
= ref(A X B,ws + wp) div X.

To grasp the idea intuitively, consider for instance A and B reflected on 128-bit words. The
degrees of ref(A,128) and ref(B,128) is at most 127. The degree of
ref(A, 128) X ref(B, 128) is at most 254, which means it can be represented on a 255-bit
word. If it is reflected on a 256-bit word, we need to right shift it to make it become a 255-bit
word (and a 255-degree polynomial).

The goal of this section is to explain how to express ref(73, 128) directly from A and B
without using their reflected representations.

As we have T3(X) = T1(X) X T2(X) mod P(X), we will work on T1(X) X T>(X) to find
properties to relate ref (73, 128) directly to A and B.

» The Euclidean division rule allows us to write T1(X) X T2(X) = g(X) X P(X) + T3(X)

with deg(T3) < 128. As the degree of T1(X) X T2(X) is at most 254 and the degree of
P(X) is 128, we have deg(q) < 126.

e The property on the multiplication of reflected inputs allows us to write:
ref(Ty X Tp,256) = ref (T, 128) X ref(T2, 128) X X.

e One can see that the reflection operation is a linear one, then
ref(T) X Ty,256) = ref(q X P,256) + ref(T3,256).

» By using our knowledge on the degrees of ¢ X P and T3, we are able to write:

e ref(q X P,256) = ref(q, 127) X ref(P,129) x X = 0 (mod ref(P, 129)).
We will denote in the sequel p = ref (P, 129).
o ref(T3,256) = ref(T3, 128) x X'?8.

We deduce from the above properties that
ref(T3,128) x X'?® (mod p) = A x Bx X (mod p), which reconstructs the reasoning
behind Gueron's equality in Gue2013:

ref(T3,128) = A X BXx X) x X~ '® (mod p).
Recognizing Montgomery Fast Reduction

Montgomery reduction (either on integers or on polynomials) is a necessary step in the
multiplication using elements in Montgomery form. When working with a fixed modulus n,
instead of using a residue a mod 7, one uses a residue @’ = Aa mod n with gcd(4,n) = 1.
All operations are made in the Montgomery domain before putting back the result in its usual
form by dividing it by A. With a clever choice of A, the division can be a shift. Addition of
elements in Montgomery form is unchanged as Aa + Ab = A(a + b) (mod n). The
multiplication ~ of elements in Montgomery form is a little trickier as
Ada x Ab = A*(ab) (mod n). To keep the result of a multiplication in the Montgomery form,
one needs to compute efficiently the modular division by 4; it is the Montgomery reduction
algorithm known as REDC.

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 10/14

11/07/2016

Reversing a Finite Field Multiplication Optimization

REDC(c) = % (mod n).

The variant known as FastREDC is of particular interest to us. In our case, we work on binary
polynomials (hence beware of hasty generalizations, e.g. we removed all signs), A = X'
and the modulus we consider is p(X) = X 4 X177 4 x126 4 x121 4 1.

Require:
e X'28 the Montgomery basis
e U, the input polynomial to reduce, of degree at most 255
e p, the reduction polynomial of degree 128
° p’ :p71 (mod X128)

Ensure: T =U/X'?® (mod p)
1: function FASTREDC(U, X!28 p,p’)
2: Q + ((U mod X'28) x p/) mod X%
3 T+ (U+Q xp)divX'*
4: return T
5: end function

To recognize the Montgomery reduction in the optimization proposed in Gue2013, we have to
notice that p(X) = X' 4+ 0xc2(0*)(X) x X% + 1, where 0xc2(0'*)(X) stands for the
polynomial of degree 63 whose sequence of coefficients is Oxc2(0714). We also have that
P =p~! (mod X'?®) = 0xc2(0**)(X)X® + 1. The fact that p and p’ uses the same
constant 0xc2 (0714) forces us to understand finely the optimization if we are to apply it with
other parameters.

Doing the computation by hand to check that the given algorithm corresponds to the
optimization proposed in Gue2013 is left as an exercise to the reader.

Equivalence between Optimizations

If we make the assumption that Ozturk and Gopal's PCLMULQDQ-based reduction and
Gueron's Montgomery reduction should rely on the same principle implemented slightly
differently, we can simultaneously prove the equivalence between the two optimizations and
deduce the value of POLY?2.

In fact, by fixing POLY2 to be the constant 0xC2 (0721)1C2(076), both computations end up
being a Montgomery reduction, trading two vpshufd instructions against one pclumulqdgq.

The trick to find the value of POLY2 was to check in one Intel's GCM reference implementation,
but it can also be painfully reconstructed by hand with the equivalence assumption in mind.

Again, doing the computation by hand is left as an exercise to the reader.

Putting Things Together

If we refer to BZ2010, Barrett's and Montgomery's algorithms are MSB and LSB variants of a
division algorithm. The former is the classical division algorithm where one wants to cancel
most significant digits and find the remainder; in the latter, one wants to cancel least significant
digits and keep the most significant ones. Therefore, they naturally correspond to each other
respectively on reflected and straight inputs.

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html

11/14

11/07/2016 Reversing a Finite Field Multiplication Optimization

We can see that the first so-called Barret's optimization allows easily to substitute pclmulqdq
instructions by XORs and shifts. It is not the case anymore with the so-called Montgomery's
optimization as computations involve modular multiplications with high degree polynomials.
This can explain why trying to work directly with reflected inputs was not the priority in times
when pclmulqgdq was rather slow.

Applying It with Different Parameters

As an example, because we now can do it, let us apply the optimization on another finite field.
If we were to do it on a smaller finite field, let's say the finite field with 2°4
we proceed?

elements, how would

We can use the polynomial defining the finite field with 2% elements that was proposed as a

complement in the original proposal of GCM: P(X) = X* + X* + X3 + X + 1. Its reflected
is p(X) = X0 + X9 £ x61 4 x00 41 and
P =p7! (mod X*) =Xx% 4+ X6 4+ X0 4+ 1. We can write:
p(X) = X% + 0xb0'®(X) + 1 and p'(X) = 0xb0'®(X) + 1, which is still another case
where the two polynomials make the same constant appear. One has to replace X' in the
pseudo-code of the function FastREDC by X% and the input to it is of degree at most 127.

Applying the same optimization leads to the following piece of code:

Input: 128-bit operand [X1 : XO@]

[A1 : AO] = X0 « OxbOOOEOOEOOOOOOEOO
[B1 : BO] = AO ¢ OxbOOOEOOOOOEEOOOO
Output: [AO@ @ A1 @ B1 @ X0 @ X1]

Conclusion

At this point we know that the piece of code:

vmovdqga T3, [W]

vpclmulqdq T2, T3, T7, 0x01

vpshufd T4, T7, 78

vpxor T4, T4, T2

vpclmulqdq T2, T3, T4, 0x01

vpshufd T4, T4, 78

vpxor T4, T4, T2

vpxor T1, T1, T4 ; result in T1

does a Montgomery reduction on a binary polynomial of degree at most 255, a basis X' and
the modulus p(X) = X' 4 X127 4 x126 4 X121 4 1. Most importantly, we understand how

and why, enough to be able to reconstruct the high level algorithm and apply it with different
parameters.

Acknowledgments

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html 12/14

11/07/2016

Reversing a Finite Field Multiplication Optimization

Marion Videau would like to thank Paul Zimmermann for taking time explaining computer
arithmetic both in real life and in books and Pierrick Gaudry for being a supportive and
compassionate office mate when she worked on this topic.

References

https://fen.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/CLMUL_instruction_set
https://en.wikipedia.org/wiki/Universal_hashing

NIST Special Publication 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, November 2007.
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf Original
proposal to NIST from David A. McGrew and John Viega (2004).

NIST Federal Information Processing Standards Publication 197. Announcing the
Advanced Encryption Standard (AES), November 26, 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf Original proposal to NIST
from Joan Daemen and Vincent Rijmen (1998).

Philip Rogaway. Evaluation of Some Blockcipher Modes of Operation, Evaluation
carried out for the Cryptography Research and Evaluation Committees
(CRYPTREC) for the Government of Japan, Feb. 2011.
http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs, version 2016-Jan-09.
http://www.agner.org/optimize/instruction_tables.pdf

Shay Gueron. AES-GCM for Efficient Authenticated Encryption - Ending the reign of
HMAC-SHA-1?, Workshop on Real-World Cryptography, 2013.
https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf

Shay Gueron and Michael Kounavis. Efficient implementation of the Galois Counter
Mode using a carry-less multiplier and a fast reduction algorithm, Information
Processing Letters 110 (2010) 549-553. http://dx.doi.org/10.1016/j.ipl.2010.04.011
Erdinc Ozturk and Vinodh Gopal. Enabling High-Performance Galois-Counter-Mode
on Intel Architecture Processors, Oct. 2012, Intel.
http://www.intel.com/content/dam/www/public/us/en/documents/software-
support/enabling-high-performance-gcm.pdf

Richard Brent and Paul Zimmermann. Modern Computer Arithmetic, Cambridge
University Press, 2010. http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.9.pdf

Comments

http://blog.quarkslab.com/reversing-a-finite-field-multiplication-optimization.html

13/14

https://en.wikipedia.org/wiki/AES_instruction_set
https://en.wikipedia.org/wiki/CLMUL_instruction_set
https://en.wikipedia.org/wiki/Universal_hashing
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://crypto.stanford.edu/RealWorldCrypto/slides/gueron.pdf
http://dx.doi.org/10.1016/j.ipl.2010.04.011
http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf
http://www.loria.fr/~zimmerma/mca/mca-cup-0.5.9.pdf

